The Markov Assumption in Spoken Dialogue Management

نویسندگان

  • Tim Paek
  • David Maxwell Chickering
چکیده

The goal of dialogue management in a spoken dialogue system is to take actions based on observations and inferred beliefs. To ensure that the actions optimize the performance or robustness of the system, researchers have turned to reinforcement learning methods to learn policies for action selection. To derive an optimal policy from data, the dynamics of the system is often represented as a Markov Decision Process (MDP), which assumes that the state of the dialogue depends only on the previous state and action. In this paper, we investigate whether constraining the state space by the Markov assumption, especially when the structure of the state space may be unknown, truly affords the highest reward. In a simulation experiment conducted in the context of a dialogue system for interacting with a speech-enabled web browser, models under the Markov assumption did not perform as well as an alternative model which attempts to classify the total reward with accumulating features. We discuss the implications of the study as well as limitations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

Markov Decision Processes with Continuous Observations for Dialogue Management

This work shows how a spoken dialogue system can be represented as a Partially Observable Markov Decision Process (POMDP) with composite observations consisting of discrete elements representing dialogue acts and continuous components representing confidence scores. Using a testbed simulated dialogue management problem and recently developed optimisation techniques, we demonstrate that this con...

متن کامل

Combining POMDPs trained with User Simulations and Rule-based Dialogue Management in a Spoken Dialogue System

Over several years, we have developed an approach to spoken dialogue systems that includes rule-based and trainable dialogue managers, spoken language understanding and generation modules, and a comprehensive dialogue system architecture. We present a Reinforcement Learning-based dialogue system that goes beyond standard rule-based models and computes on-line decisions of the best dialogue move...

متن کامل

Jason D. Williams, Pascal Poupart, and Steve Young Partially Observable Markov Decision Processes with Continuous Observations for Dialogue Management

This work shows how a spoken dialogue system can be represented as a Partially Observable Markov Decision Process (POMDP) with composite observations consisting of discrete elements representing dialog acts and continuous components representing confidence scores. Using a testbed simulated dialogue management problem and recently developed optimisation techniques, we demonstrate that this conti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005